F(S)=1/s(s平方 7)
F(S)=1/s平方 2s
F(S)=S/(S平方-9)平方
X平方 Y"-2XY微分一次 2Y=(X平方)(e負x平方)
2006-01-08 14:46:14 · 2 個解答 · 發問者 劉星宇 4 in 教育與參考 ➔ 考試
第一題是+7
第一題是+2s
2006-01-08 19:29:23 · update #1
1. F(s) = 1/s( s2 + 7 )sol: F(s) = 1/s( s2 + 7 ) = ( 1/7 )( 1/s ) - ( 1/7 )[ s/( s2 + 7 ) ] ƒ(t) = £-1{ F(s) } → ƒ(t) = ( 1/7 )[ 1 - cos √7 t ]u(t) #2. F(s) = 1/( s2 + 2s )sol: F(s) = 1/( s2 + 2s ) = 1/s( s + 2 ) = ( 1/2 )( 1/s ) - ( 1/2 )[ 1/( s + 2 ) ] ƒ(t) = £-1{ F(s) } → ƒ(t) = ( 1/2 )[ 1 - e-2t ]u(t) #3. F(s) = s/(s2 - 9 )2sol: £{ ƒ(t)/t }=∫F(λ)dλ ~ 積分區間:s 到 ∞ → ƒ(t) = t£-1{∫F(λ)dλ } = t£-1{∫[ λ/( λ2 - 9 )2 ]dλ = ( t/2 )£-1{ 1/( s2 - 9 ) } = ( t/12 )£-1{ 1/( s - 3 ) - 1/( s + 3 ) } = ( t/12 )( e3t - e-3t )u(t) = u(t)( t/6 )sinh 3t → ƒ(t) = u(t)( t/6 )sinh 3t #4. x2y" - 2xy' + 2y = x2exp( - x2 )sol: 此方程式為 Cauchy - Euler equation 令 y = xm 代入得 m( m - 1 ) - 2m + 2 = 0 → m2 - 3m + 2 = 0 → ( m - 1 )( m - 2 ) = 0 → m = 1 , 2 ~ 相異實根 → yh = c1x + c2x2 ~ homogenous solution ( 齊性解 ) 令 yp = u1y1 + u2y2 = u1x + u2x2 Q = exp( - x2 ) W( y1 , y2 ) =│x x2│= x2 │1 2x│ u1 =∫( - y2Q/W )dx =∫exp( - x2 )dx ~ 非封閉解 u2 =∫( y1Q/W )dx =∫[ exp( - x2 )/x ]dx ~ 非封閉解 第4.題如果要用 Laplace 轉換來算,但沒給初值條件,所以不能用 Laplace 轉換來算,如果真要用 Laplace 轉換算的話,那也會異常難解! 我用正規方法來算,結果算出來兩個非封閉解,這實在太難搞啦!不曉得我題目有無抄錯!? 關於非封閉解,請參考我的解答↓http://tw.knowledge.yahoo.com/question/?qid=1405123101476 此解答還在投票中,我是編號002,請參考。 希望以上回答能幫這您!
2006-01-08 20:15:34 · answer #1 · answered by 龍昊 7 · 0⤊ 0⤋
你第一提的題目是+7 -7?第二提+2s -2s? 你補上我幫你解看看喔!
2006-01-08 18:48:19 · answer #2 · answered by ? 2 · 0⤊ 0⤋