1.請問什麼是不偏估計量呢?覺得它很抽象ㄌㄟ
2.中央極限定理:假設p(Z
請問-1.645這值怎麼算出來呢?
麻煩知道的人為我解題囉!卸卸啦
2005-12-29 05:01:48 · 3 個解答 · 發問者 ginging20012001 1 in 教育與參考 ➔ 考試
如果抽樣分配的平均值(期望值)等於欲估計的母體參數,我們稱之為母體參數的「不偏估計式」,把數值代入就是不偏估計量.
--------------------------------------------------------------------
--------------------------------------------------------------------
這個式子原來可能是從某一個母體中抽出n組資料,這n組資料可以算出n個樣本平均數,當n很大時這些平均數會接近常態分配,
此常態分配f(x)的平均數是40變異數是1/5
若P (X
因為不知道學到哪裡,我就盡量說簡單一點喔~
首先 f(x ) 是一個p.d.f (機率密度函數)
--------------------------------------------------------------
簡單來說
F(K ) 就是對f(x )作積分,範圍從 -∞ 到 K這個值
因為 f(x ) = [1/(√ 2π )σ]*exp{[-(x-μ)^2 ]/2σ^2}
用敘述的就是...
[( 根號 2π乘以σ) 的 -1 次方]再乘以 e的[( 兩倍σ平方) 分之負的 ( x-μ )的平方 ] 次方....
其中 μ就是平均數 40, σ就是標準差1/√5,為了方便起見, 我們會令一個變數Z , Z= (X-μ)/σ, 也就是 p(Z
1.就是直接積分, 令積分結果等於一變數I , 那 I 的平方就是兩個積分相乘, 再把其中一個積分的變數換成 Y, 最後藉由極座標求出 I 平方的答案再開根號就好了.
-------------------------------------------------------------------------
以下為考試時最常用的解法
2. 但是常態分配的 p.d.f. 變不是很好看, 積分過程也很花時間
, 一寫大概1/3的考卷空間就沒了, 所以才會出現查表的方法.也要感謝作表的人....
在表中可以找到 :
P (Z < -1.65 )=0.049471
P (Z < -1.64 )=0.050503
唯獨沒有機率值是 0.050000的
這時就要用內插法了,由表中我們知道Z介於 -1.64 和 -1.65 之間.
..-1.65 ━┳━ 0.049471
........Z ━╋━ 0.050000
...-1.64━┻━ 0.050503
這時就用他們之間的比例關係來求Z,式子就是
( 0.050503-0.050000) / ( 0.050503 - 0.049471)
=[ ( -1.64 ) - Z ] / ( -1.64 ) - ( -1.65 )
求出的 Z 就是 -1.645
又因為 Z = ( X - 40) / (1/√5)
所以 -1.645 還要先乘以 1/√5 再加 40
算出來 K 約等於 40.447213595499957939281834733746
小算盤算的^^" , 如果考試不能用計算機 ,√5 就留著吧
以上為考試時最常用的解法
========================
在大一時所學的幾乎都是" 結果" ,大二之後才是學"原因 "
同一個定理也可以有很多解釋方法, 上面的中央極限定裡也是,在這只列出了其中一種
考試加油吧~
2005-12-31 18:05:45 · answer #1 · answered by Anonymous · 0⤊ 0⤋
那麻煩寄給我囉,我的e-mail:ginging20012001@yahoo.com.tw
2005-12-29 17:25:09 · answer #2 · answered by ginging20012001 1 · 0⤊ 0⤋
我有資料<但是是WORD檔內有圖表
如果有需要我再寄給您唷
2005-12-29 14:03:01 · answer #3 · answered by Anonymous · 0⤊ 0⤋