Moi aussi j'aimerais savoir. Dès que tu auras trouvé, fais-moi signe.
2007-03-07 06:07:56
·
answer #1
·
answered by Anonymous
·
1⤊
0⤋
Résultat:
ln(x+2) + x / (x+2)
(révise tes cours! c'est pourtant pas compliqué!)
2007-03-07 18:58:06
·
answer #2
·
answered by Somebody 6
·
1⤊
0⤋
ln(x+2)+x/(x+2)
derive de ln(u)=u'/u ici u'=1
derive de x =1
derive de (ab)'= a'b+ab'
2007-03-07 06:09:03
·
answer #3
·
answered by Anonymous
·
1⤊
0⤋
f(x)'=(1)'+(xln(x+2))'
=0+[x(ln(x+2))'+(x)'ln(x+2)]
=x * 1/(x+2) +1 * ln(x+2)
=x/(x+2) + ln(x+2)
2007-03-10 23:41:40
·
answer #4
·
answered by slimane H 2
·
0⤊
0⤋
(uv)' = u'v+v'u
donc:
(x ln(x+2))' = ln(x+2) + x/(x+2)
2007-03-07 20:01:57
·
answer #5
·
answered by The Xav identity 6
·
0⤊
0⤋
f(x) = y = 1 + xln(x + 2)
y ' = ?
Solution : y ' = (1)' + (xln( x + 2)) '
= 0 + 1(ln(x + 2)) + 1/(x + 2) (1) (x)
= ln( x + 2) + x/(x + 2)
2007-03-07 11:55:48
·
answer #6
·
answered by frank 7
·
0⤊
0⤋
[1+xln(x+2)]'=?
we know that:
[ln(u)]'=u'/u , (uv)'=u'v+v'u and (u+v)'=u'+v'
si u=x+2→u'=1
[f(x)]'= [x*ln(x+2)]'=(x)'ln(x+2)+(1/x+2)(x)
[f(x)]'=[xln(x+2)]'=[1ln(x+2)+x/(x+2)]
then,
[f(x)]'=[1+xln(x+2)]'=0+ln(x+2)+x/(x+2)
[f(x)]'=[1+xln(x+2)]'=ln(x+2)+x/(x+2)
or f(x)'=ln(x+2)+x/(x+2)
2007-03-07 11:04:09
·
answer #7
·
answered by Johnny 2
·
0⤊
0⤋
derivée de 1 = 0
soit f=x et g=ln(x+2)
rappels :
on sait que (fg)'=f'g +fg' et (ln(u))'=u'/u
donc
f'=1 et g'=1/(x+2)
soit x/(x+2) +ln(x+2)
2007-03-07 10:50:49
·
answer #8
·
answered by rabat p 2
·
0⤊
0⤋
En utilisant le logiciel Maple, on trouve:
ln(x+2)+x/(x+2)
2007-03-07 07:27:09
·
answer #9
·
answered by Keplini 1
·
1⤊
1⤋
Ln(x+2)+x/(x+2)
2007-03-07 07:13:24
·
answer #10
·
answered by Belka 3
·
1⤊
2⤋