English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
Toutes les catégories

13 réponses

Moi aussi j'aimerais savoir. Dès que tu auras trouvé, fais-moi signe.

2007-03-07 06:07:56 · answer #1 · answered by Anonymous · 1 0

Résultat:
ln(x+2) + x / (x+2)
(révise tes cours! c'est pourtant pas compliqué!)

2007-03-07 18:58:06 · answer #2 · answered by Somebody 6 · 1 0

ln(x+2)+x/(x+2)

derive de ln(u)=u'/u ici u'=1
derive de x =1
derive de (ab)'= a'b+ab'

2007-03-07 06:09:03 · answer #3 · answered by Anonymous · 1 0

f(x)'=(1)'+(xln(x+2))'
=0+[x(ln(x+2))'+(x)'ln(x+2)]
=x * 1/(x+2) +1 * ln(x+2)
=x/(x+2) + ln(x+2)

2007-03-10 23:41:40 · answer #4 · answered by slimane H 2 · 0 0

(uv)' = u'v+v'u
donc:
(x ln(x+2))' = ln(x+2) + x/(x+2)

2007-03-07 20:01:57 · answer #5 · answered by The Xav identity 6 · 0 0

f(x) = y = 1 + xln(x + 2)

y ' = ?

Solution : y ' = (1)' + (xln( x + 2)) '

= 0 + 1(ln(x + 2)) + 1/(x + 2) (1) (x)

= ln( x + 2) + x/(x + 2)

2007-03-07 11:55:48 · answer #6 · answered by frank 7 · 0 0

[1+xln(x+2)]'=?
we know that:
[ln(u)]'=u'/u , (uv)'=u'v+v'u and (u+v)'=u'+v'
si u=x+2→u'=1
[f(x)]'= [x*ln(x+2)]'=(x)'ln(x+2)+(1/x+2)(x)
[f(x)]'=[xln(x+2)]'=[1ln(x+2)+x/(x+2)]
then,
[f(x)]'=[1+xln(x+2)]'=0+ln(x+2)+x/(x+2)
[f(x)]'=[1+xln(x+2)]'=ln(x+2)+x/(x+2)
or f(x)'=ln(x+2)+x/(x+2)

2007-03-07 11:04:09 · answer #7 · answered by Johnny 2 · 0 0

derivée de 1 = 0
soit f=x et g=ln(x+2)
rappels :
on sait que (fg)'=f'g +fg' et (ln(u))'=u'/u
donc
f'=1 et g'=1/(x+2)
soit x/(x+2) +ln(x+2)

2007-03-07 10:50:49 · answer #8 · answered by rabat p 2 · 0 0

En utilisant le logiciel Maple, on trouve:

ln(x+2)+x/(x+2)

2007-03-07 07:27:09 · answer #9 · answered by Keplini 1 · 1 1

Ln(x+2)+x/(x+2)

2007-03-07 07:13:24 · answer #10 · answered by Belka 3 · 1 2

fedest.com, questions and answers