Data un'applicazione di SU(2) in SO(3) esso è un omomorfismo , perche è suriettivo? e il nucleo di SU(2) da cosa è dato?
2007-02-12
18:44:41
·
3 risposte
·
inviata da
SuperPippo
3
in
Matematica e scienze
➔ Matematica
Eh eh Gabriele...dal pollice verso!!! se non sai cos'è SU(2) ...!!!!
2007-02-12
20:03:46 ·
update #1
Ad un matematico che non lo sa consiglierei il karakiri!!!
2007-02-13
03:40:30 ·
update #2
Va bene ragazzi che la luce sia con voi..... SU(2) è un gruppo di Lie ottenuto attraverso l’operazione di esponenzialità di un elemento dell’algebre di Lie su(2) per cui se X di su(2) allora EXP(X) di SU(2). Queta operazione è chiaramente suriettiva.
ma anche i due gruppi O(3) e SO(3) hanno la stessa algebra di Lie o(3) con lo stesso processo per cui: X di o(3) allora EXP(X) di SO(3).
Ma le due algebre di Lie sono tra loro isomorfe ad algebra di Lie di dimensione reale 3.
Per cui s: o(3) a su(2)
Conseguenza l’operazione suriettiva da o(3) a SO(3) è equivalente a partire da o(3) definita come inversa s di su(2) fare EXP(su(2)) ed applicare g di SU(2) a SO(3).
Il nucleo è banalmente +/-(I)2 di SU(2)
2007-02-13
19:48:45 ·
update #3