No entiendo exactamente tu pregunta. Pero entre las funciones continuas encontramos unas que se llaman suaves porque su derivada existe en todos los puntos. Pero por ejemplo hay funciones continuas que no tienen derivada en uno o varios puntos.
Por ejemplo f(x) = |x| valor absoluto de x
Es una función que tiene un "pico" en x = 0 y a pesar de ser continua su derivada no existe en cero.
Ahora que también existen funciones continuas más radicales como el movimiento browniano que no tiene derivada en ningún punto. La curva de wiesstras también es una función continua de la cual no existe su derivada.
2007-02-05 05:42:29
·
answer #1
·
answered by dharius182 4
·
0⤊
0⤋
Funciones continuas
[Intuitivamente, una función f es continua si su gráfica no contiene interrupciones, ni saltos ni oscilaciones indefinidas. Aunque esta descripción es, por lo general, suficiente para decidir si una función es continua observando simplemente su gráfica, es fácil engañarse, y la definición rigurosa es muy importante. (Spivak, 132)]
[Las funciones continuas constituyen la clase básica de funciones para las operaciones del análisis matemático. La idea general de función continua viene a ser la de que su gráfica sea continua; esto es, que la curva pueda dibujarse sin separar el lápiz del papel. (Aleksandrov, 1, 117)]
Intervalos finitos
[Sean a y b dos números tales que a < b. El conjunto de todos los números x comprendidos entre a y b recibe el nombre de intervalo abierto de a a b y se escribe a < x < b. Los puntos a y b reciben el nombre de extremos del intervalo. Un intervalo abierto no contiene a sus extremos.
El intervalo abierto a < x < b junto con sus extremos a y b recibe el nombre de intervalo cerrado de a a b y se escribe a £ x £ b.
Sea a un número cualquiera. El conjunto de todos los números x tales que x < a recibe el nombre de intervalo infinito. Otros intervalos infinitos son los definidos por x £ a, x > a y x ³ a. (Ayres, 2)]
Definición de función continua
[La función f es continua en a si
.
(Spivak, 132)]
[Una función se dice continua en un intervalo dado si es continua en todo punto x de este intervalo...
Así, para dar una definición matemática de esa propiedad de las funciones que viene caracterizada por el hecho de que su gráfica sea continua (en el sentido usual de la palabra), fue necesario definir primero la continuidad local (continuidad en el punto a), y luego, a partir de ella, definir la continuidad de la función en todo el intervalo. (Aleksandrov, 1, 118-9)]
Suerte!!
2007-02-05 07:30:13
·
answer #2
·
answered by maryne 7
·
0⤊
0⤋