Guarda:
x ^5 - 17x^3 + 16x =
x^5 - x^3 - 16 X^3 + 16x =
x^3(x^2-1) - 16x(x^2-1) =
x(x^2-16)(x^2-1) =
x(x-4)(x+4))(x-1)(x+1)
fatto (senza scomodare Ruffini)!
La verità :li merito o no questi punti???
2007-01-22 04:32:55
·
answer #1
·
answered by Gaetano Lazzo 5
·
2⤊
0⤋
devi utilizzare Ruffini.
2007-01-22 12:24:58
·
answer #2
·
answered by Stefania_84 2
·
2⤊
0⤋
probabile k sia ruffini..anzi è questo di sicuro.. se serve te lo spiego
2007-01-22 12:24:13
·
answer #3
·
answered by Anonymous
·
2⤊
0⤋
Puoi procedere in questo modo:
x^5 - 17x^3 + 16x =
raccogli la x
= x(x^4 - 17x^2 + 16)
adesso bisogna scomporre il polinomio che si trova all'interno della parentesi.
x^4 - 17x^2 + 16 = 0
Se lo guardi bene ricorla le equazioni quadratiche, quindi pongo
x^2 = y
e facendo la sostituzione ottengo
y^2 - 17y + 16 = 0
trovo le radici di questo polinomio
y = (17 ± √(17^2 - 4*16))/2 = (17 ± √225)/2 = (17 ± 15)/2
da cui
y1 = (17 - 15)/2 = 1
y2 = (17 + 15)/2 = 16
Per la posizione fatta prima ottengo che
x^2 = y1 ===> x^2 - 1 = 0 ===> (x + 1)(x - 1) = 0
x^2 = y2 ===> x^2 - 16 = 0 ===> (x + 4)(x - 4) = 0
Ritornando al polinomio che stavamo scomponendo, avevamo
x(x^4 - 17x^2 + 16) =
abbiamo scomposto il polinomio fra le parentesi, quindi posso scrivere
= x(x + 1)(x - 1)(x + 4)(x - 4)
Spero che ti sia chiaro, in ogni caso puoi chiedermi chiarimenti.
Ciao!!!
Lulisja
2007-01-25 05:32:16
·
answer #4
·
answered by Lulisja 5
·
0⤊
0⤋
Una parola: Ruffini. Se non ti viene in mente nulla, sei messa male...
2007-01-22 17:11:33
·
answer #5
·
answered by Pat87 4
·
0⤊
0⤋
Per prima cosa si raccoglie la x a fattor comune
x(x^4-17x^2+16)
a questo punto, per maggiore chiarezza introdurrei la variabile t=x^2
perciò:
x(t^2-17t+16)
la scomposizione dell'espressione all'interno della parentesi sono del tipo:(t^2-17t+16)=
t^2-(a+b)t+(a*b)=(t+a)(t+b)
dove, nel nostro caso: a+b=-17 ed a*b=16 con a=-1 e b=-16
perciò si avrà:
x(t-1)(t-16)=x(x^2-1)(x^2-16), per la regola della differenza di due quadrati,a cioè (A^2-B^2)=(A+B)(A-B) abbiamo:
=x(x+1)(x-1)(x-4)(x+4)
spero che sia abbastanza chiaro...salut
2007-01-22 13:19:36
·
answer #6
·
answered by Paolo L 2
·
0⤊
0⤋
guardala come x(x^4-17^2+16)........hai quindi 1 e -4 x questo fai prodotto di x-1 x+1 e x-4 x+4.......più facile di ruffini e risultato è uguale
2007-01-22 12:32:35
·
answer #7
·
answered by Luca G 1
·
0⤊
0⤋
Prima di tutto (x-1)(x+1) = x^2 - 1
Poi: (x+4)(x-4) = x^2 - 16
x(x+1)(x-1)(x+4)(x-4) = x(x^2 - 1)(x^2 - 16)=(x^3 - x)(x^2 - 16)=
x^5 -16x^3 - x^3 + 16x = x^5 -17x^3 + 16x
2007-01-24 04:58:06
·
answer #8
·
answered by Aurora Borealis 2
·
0⤊
1⤋