En R, no hay solucion
En C, las soluciones son:
-1/5+i·[V(15)/10]
-1/5-i·[V(15)/10]
Y no es una funcion de segundo grado... es una ecuacion de segundo grado
2007-01-04 14:54:53
·
answer #1
·
answered by Anonymous
·
0⤊
0⤋
Mira hr1hc
En los Trinomio de la Forma ax² + bx + c, para hallar la solución una forma rapida de resolverlos es aplicando Factorización siempre y cuando la solucion sea real
En tu ejercicio como su solucion no es real sino que nos da raíces imaginarias, aplicaremos la Formula General
5x² + 2x + 1
Por Formula General:
-b ± √(b² - 4ac)
--------------------
2a
Donde:
a = 5
b = 2
c = 1
-2 + √[(2)² - 4(5)(1)]
-------------------------------= -0.2 + 0.4i
2(5)
-2 - √[(2)² - 4(5)(1)]
-------------------------------= -0.2 - 0.4i
2(5)
tu resultado
x= -0.2 + 0.4i
x= -0.2 - 0.4i
Saludos
2007-01-04 15:08:50
·
answer #2
·
answered by ing_alex2000 7
·
2⤊
0⤋
Depemdiendo de lo que quieras saber!!!
2007-01-05 16:22:49
·
answer #3
·
answered by NenitA* 4
·
1⤊
0⤋
El descriminante es negativo. Po r lo tanto no tiene solución en los Nos REALES.
2007-01-04 14:42:21
·
answer #4
·
answered by Ramiro de Costa Rica 7
·
1⤊
0⤋
5x²+2x+1
D = 2² - 4.5.1
D = -16
Solución: La respuesta para los números verdaderos no existe
2007-01-06 12:59:45
·
answer #5
·
answered by aeiou 7
·
0⤊
0⤋
-b + - V( b al cuadr - 4ac) div 2a
(a es el 5 del primer termino, b es el 2 del dsegundo termino, c es el uno del tercer termino
la V es raiz, la division abarca toda la expresion que le antecede los signo +- que estan juntos se usan porque hay dos soluciones para una hay que sumar y para la otra hay que restar)
-2 +- V(4 - 4.5.1) div 2.5
-2 +- V(4-20) div 10
-2 +- V-16 div 10
-2 +- 4i div 10
aqui salen las dos soluciones
primera
-2 + 4i div 10
segunda
-2 - 4i div 10
2007-01-05 10:38:10
·
answer #6
·
answered by elgriiito 3
·
0⤊
0⤋
NO TIENE SOLUCION REAL
2007-01-05 01:39:50
·
answer #7
·
answered by Anonymous
·
0⤊
0⤋
x= -0.2 + 0.4i
x= -0.2 - 0.4i
2007-01-04 22:46:28
·
answer #8
·
answered by Thor 7
·
0⤊
0⤋
Se resuelve así
x1 = ((-2+(4-4(5)(1))^0.5)/10
x1 = ((-2+(4-20))^0.5)/10
x1 = ((-2+(-16))^0.5)/10
Como -16^0.5, no es real, la ecuación no tiene solución en los reales.
En los complejso se sigue así
x1 = ((-2+4i)/10
x1 = ((-1+2i)/5
o
x1 = -1/5 +(2/5)i
x1 = -0.2 + 0.4i
y x2 = -0.2 - 0.4i
donde i es la base de los número imaginarios
i = (-1)^0.5
2007-01-04 20:44:44
·
answer #9
·
answered by Javier Salazar Vega 6
·
0⤊
0⤋
la respuesta es imaginaria y es 1/5 i y 3/5i
2007-01-04 18:01:26
·
answer #10
·
answered by Anonymous
·
0⤊
0⤋