English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
Todas las categorías

9 respuestas

La Teoría del Caos permite deducir el orden subyacente que ocultan fenómenos aparentemente aleatorios. Se sabe que ecuaciones totalmente deterministas (como el set de Lorenz) presentan las siguientes características que definen el Caos:

i) Son deterministas, es decir:
- Existe una "ley" que gobierna la conducta del sistema
- El fenómeno se puede expresar por "comprensión" en lugar de hacerlo por "extensión"

ii) Son muy sensibles a las condiciones iniciales:
- Una desviación infinitesimal en el punto de inicio provoca una divergencia exponencial en la trayectoria del Espacio de Fase, lo que se puede cuantificar con el "Exponente de Lyapunov"
- La extrema sensibilidad a las condiciones iniciales implica que el comportamiento del sistema se indetermina a partir de cierto "Horizonte de Predicitibilidad", dado que la incerteza tecnológica asociada a los datos de entrada siempre va a ser mayor que el concepto de "infinitesimal matemático"
- A pesar de la impredictibilidad de una trayectoria particular del Espacio de Fase, se pueden encontrar "Atractores" o zonas del Espacio de Fase que tienden a ser "visitadas" con mayor frecuencia que otras.

NOTA: Normalmente la trayectoria en el Espacio de Fase de un sistema caótico genera una curva fractal (de dimensión fraccionaria)

iii) Parecen desordenados o aleatorios, pero en el fondo no lo son:
- Siguen ecuaciones deterministas
- Presentan Atractores

2006-12-11 19:18:28 · answer #1 · answered by -- Golan -- 我留照 7 · 3 0

Golan lo ha explicado correctamente. Sólo quisiera colaborar un poquito respecto a las matemáticas utilizadas.

La teoría del caos ha encontrado en las matemáticas complejas la herramienta ideal. Una ecuación sencilla de matemática compleja (que combina números reales con números imaginarios) puede generar resultados de gran complejidad, como es el caso de los fractales.

Desde hace mucho tiempo se utilizan, por ejemplo, para simulación de plantas y paisajes. Una ecuación sencilla puede determinar la forma de un árbol con muchísimas ramas, así como la distribución de plantas en un bosque. Tal como ocurre en la naturaleza, el resultado parece totalmente aleatorio, pero en realidad no lo es.

2006-12-12 01:58:59 · answer #2 · answered by melomano63 6 · 1 0

Durante décadas se pensó que si un sistema dinámico (algún sistema que se mantuviera en movimiento, como por ejemplo l. a. caida de una hoja de un arbol), actuaba de manera impredecible, era debido a influencias externas azarosas que impedian pronosticar el comportamiento de ese sistema a largo plazo. A partir de ciertos experimentos realizados en los años 60', se sabe que muchos sistemas pueden parecer impredecibles a pesar de que no existan factores aleatorios que influyan sobre ellos. Estos sistemas reciben el nombre de caoticos, termino, comunmente asociado a un estado de desorden y falta de administration, porque presentan un comportamiento, al parecer, aleatorio, aunque no. Estudiados con mayor detalle, demuestran estar controlados por leyes que determinan su evolucion. Experiencias posteriores encontraron que que el comportamiento caotico se verifica en sistemas como los circuitos electricos, los ritmos del corazon, el movimiento de los planetas, l. a. actividad del cerebro, o las reacciones quimicas. Incluso hay quienes sostienen que las fluctuaciones de l. a. bolsa de Valores, tambien puede responder a patrones caoticos.

2016-12-18 11:39:12 · answer #3 · answered by Anonymous · 0 0

Yo me voy por la respuesta de alexander.
Pero si vez la peli efecto mariposa saldras de la duda...o ¿no?

2006-12-11 11:48:22 · answer #4 · answered by Devastator 2 · 0 0

Teoría del Caos es la denominación popular de la rama de las matemáticas y la física que trata ciertos tipos de comportamientos aleatorios de los sistemas dinámicos.
En palabras vulgares, un sistema caotico ocurre cuando los sucesos se presentan seguido uno de otro no pueden ser predesibles.

2006-12-11 11:21:12 · answer #5 · answered by Alejandro IV 6 · 0 0

Alquila la película Parque Jurásico de Steven Spilberg. Hay una parte de la película donde lo explican muy bien.

2006-12-11 11:17:35 · answer #6 · answered by elfundamental 2 · 0 0

PRESISAMENTE AYER ESTABA VIENDO ESO:

La teoria del caos viene cuando definimos el crecimiento de la poblacion, el cual se da de forma geometrica.
Pero el crecimiento de los productos alimenticios no. Este ultimo crece de forma logaritmica.
Por tanto, cuando ambos se cruzan emergen los problemas.

En un ambiente natural en donde ambas cosas se cruzan la poblacion llega a su limite, su capacidad para sobrevivir con los recursos se limita y se estima que organismos moriran, a fin de que la taza de crecimiento de los productos se mantenga estable.
Esto en consecuencia puede generar disturbios en la poblecion, ya que para cuando unos mueren y otros nacen, la misma se encuentra en un estado de evolucion.


Creo que esa es,. pero si estoy errado disculpa. Hace dos dias que no duermo, probablemente no sea lo que buscas.

2006-12-11 11:13:29 · answer #7 · answered by Odio a los Estados Unidos! 5 · 0 0

En el universo la energía se encuentra en una "sopa no organizada" llamada caos. Cuando una porción de esa energía se organiza de alguna forma (conocida o no) hay una reacción que produce que una porción equivalente de energía se desorganice, aumentando el caos. Por ejemplo cuando comemos, la energía que se produce en nuestros cuerpos para seguir vivos produce un equivalente de caos en el universo.

2006-12-11 11:33:13 · answer #8 · answered by Anonymous · 0 1

Teoría del Caos es la denominación popular de la rama de las matemáticas y la física que trata ciertos tipos de comportamientos aleatorios de los sistemas dinámicos. Los sistemas dinámicos se pueden clasificar basicamente en:

estables
inestables
caóticos (Caos determinista)
Un sistema estable tiende, según transcurre el tiempo, a un punto u órbita, según su dimensión (atractor). Un sistema inestable se escapa de los atractores, y un sistema caótico manifiesta los dos comportamientos. Por un lado, existe un atractor por el cual el sistema se ve atraído, pero a la vez, hay "fuerzas" que lo alejan de éste. De esa manera, el sistema permanece confinado en una zona de su espacio de estados, pero sin tender a un atractor fijo.

Una de las mayores características de un sistema inestable es que tiene una gran dependencia de las condiciones iniciales. De un sistema del que se conocen sus ecuaciones características, y con unas condiciones iniciales fijas, se puede conocer exactamente su evolución en el tiempo. Pero en el caso de los sistemas caóticos, una mínima diferencia en esas condiciones hace que el sistema evolucione de manera totalmente distinta. Ejemplos de tales sistemas incluyen la atmósfera terrestre, el Sistema Solar, las placas tectónicas, los fluidos en régimen turbulento y los crecimientos de población.

Por ejemplo, el tiempo atmosférico, según describió Edward Lorenz, se describe por 3 ecuaciones diferenciales bien definidas. Siendo así, conociendo las condiciones iniciales se podría conocer la predicción del tiempo en el futuro. Sin embargo, al ser éste un sistema caótico, y no poder conocer nunca con exactitud los parámetros que fijan las condiciones iniciales (en cualquier sistema de medición, por definición, siempre se comete un error, por pequeño que éste sea) hace que aunque se conozca el modelo, éste diverja de la realidad pasado un cierto tiempo. Por otra parte, el modelo atmosférico es teórico y puede no ser perfecto, y el determinismo, en el que se basa, es también teórico.


[editar] Movimiento caótico
Para poder clasificar el comportamiento de un sistema como caótico, el sistema debe tener las siguientes propiedades:

debe ser sensible a las condiciones iniciales
debe ser transitivo
sus órbitas periódicas deben ser densas
Sensibilidad a las condiciones iniciales significa que dos puntos en tal sistema pueden moverse en trayectorias muy diferentes en sus fases del espacio incluso si la diferencia en sus configuraciones iniciales son muy pequeñas. El sistema se comportaría de manera idéntica sólo si sus configuraciones iniciales fueran exactamente las mismas. Un ejemplo de tal sensibilidad es el así llamado "efecto mariposa", en donde el aleteo de las alas de una mariposa puede crear delicados cambios en la atmósfera, los cuales durante el curso del tiempo podrían modificarse hasta hacer que ocurra algo tan dramático como un tornado. La mariposa aleteando sus alas representa un pequeño cambio en las condiciones iniciales del sistema, el cual causa una cadena de eventos que lleva a fenómenos a gran escala como tornados. Si la mariposa no hubiera agitado sus alas, la trayectoria del sistema hubiera podido ser muy distinta.

La sensibilidad a las condiciones iniciales está relacionada con el exponente Lyapunov. El exponente Lyapunov es una cantidad que caracteriza el ratio de separación de trayectorias infinitesimalmente cercanas.

Transitividad significa que la aplicación de las transformaciones de cualquier intervalo dado I1 se expanden hasta que se superpone con otro intervalo dado I2, o equivalentemente que hay condiciones iniciales cuyas órbitas son densas.


[editar] Atractores
Una manera de visualizar el movimiento caótico, o cualquier tipo de movimiento, es hacer un diagrama de fases del movimiento. En tal diagrama el tiempo es implícito y cada eje representa una dimensión del estado. Por ejemplo, un sistema en reposo será dibujado como un punto, y un sistema en movimiento periódico será dibujado como un círculo.

Algunas veces el movimiento representado con estos diagramas de fases no muestra una trayectoria bien definida, sino que ésta se encuentra errada alrededor de algún movimiento bien definido. Cuando esto sucede se dice que el sistema es atraído hacia un tipo de movimiento, es decir, que hay un atractor.

De acuerdo a la forma que sus trayectorias evolucionen, los atractores pueden ser clasificadas como periódicos, cuasi-periódicos y extraños. Estos nombres se relacionan exactamente con el tipo de movimiento que provocan en los sistemas. Un atractor periódico, por ejemplo, puede guiar el movimiento de un péndulo en oscilaciones periódicas; sin embargo, el péndulo seguirá trayectorias erráticas alrededor de estas oscilaciones debidas a otros factores menores.


[editar] Atractores extraños
La mayoría de los tipos de movimientos mencionados arriba sucede alrededor de atractores muy simples, tales como puntos y curvas circulares llamadas ciclos limitados. En cambio, el movimiento caótico está ligado a lo que se conoce como atractores extraños, atractores que pueden llegar a tener una enorme complejidad como, por ejemplo, el modelo tridimensional del sistema climático de Lorenz, que lleva al famoso atractor de Lorenz. El atractor de Lorenz es, quizá, uno de los diagramas de sistemas caóticos más conocidos, no sólo porque fue uno de los primeros, sino también porque es uno de los más complejos y peculiares, pues desenvuelve una forma muy peculiar más bien parecida a las alas de una mariposa.

Los atractores extraños están presentes tanto en los sistemas continuos dinámicos (tales como el sistema de Lorenz) como en algunos sistemas discretos (por ejemplo el mapa Hènon). Otros sistemas dinámicos discretos tienen una estructura repelente de tipo Conjunto de Julia la cual se forma en el límite entre las cuencas de dos puntos de atracción fijos. Julia puede ser sin embargo un atractor extraño. Ambos, atractores extraños y atractores tipo Conjunto de Julia, tienen típicamente una estructura fractal.

El teorema de Poincaré-Bendixson muestra que un atractor extraño sólo puede presentarse como un sistema continuo dinámico si tiene tres o más dimensiones. Sin embargo, tal restricción no se aplica a los sistemas discretos, los cuales pueden exhibir atractores extraños en sistemas de dos o incluso una dimensión.


[editar] Sistemas dinámicos y teoría del caos
Los Sistemas dinámicos y teoría del caos son una rama de las Matemáticas, desarrollada en la segunda mitad del Siglo XX, que estudia lo complicado, lo impredecible, lo que no es lineal. A veces se la llama "Matemática de lo no lineal".

Para los no iniciados en matemáticas, el nombre "Teoría del Caos" puede inducir a error por dos motivos:

No necesariamente es una teoría sino que puede entenderse como un gran campo de investigación abierto, que abarca diferentes líneas de pensamiento.
Caos está entendido no como ausencia de orden, sino como cierto tipo de orden de características impredecibles, pero descriptibles en forma concreta y precisa. Es decir: un tipo de orden de movimiento impredecible.
La idea de la que parte la Teoría del Caos es simple: en determinados sistemas naturales, pequeños cambios en las condiciones iniciales conducen a enormes discrepancias en los resultados. Este principio suele llamarse efecto mariposa debido a que, en meteorología, la naturaleza no lineal de la atmósfera ha hecho afirmar a muchos científicos que es posible que el aleteo de una mariposa en determinado lugar y momento, pueda ser la causa de un terrible huracán varios meses más tarde en la otra punta del globo.

Un ejemplo claro sobre el efecto mariposa es soltar una pelota justo sobre la arista del tejado de una casa varias veces; pequeñas desviaciones en la posición inicial pueden hacer que la pelota caiga por uno de los lados del tejado o por el otro, conduciendo a trayectorias de caída y posiciones de reposo final completamente diferentes. Cambios minúsculos que conducen a resultados totalmente divergentes.

En Teoría del Caos los sistemas dinámicos son estudiados a partir de su "Espacio de Fases", es decir, la representación coordenada de sus variables independientes. En estos sistemas caóticos, es fácil encontrar trayectorias de movimiento no periódico, pero cuasi-periódicas.

En este esquema se suele hablar del concepto de Atractores Extraños: trayectorias en el espacio de fases hacia las que suelen tienden todas las trayectorias normales. En el caso de un péndulo oscilante, el atractor sería el punto de equilibrio central.

Los atractores extraños suelen tener formas geométricas caprichosas y, en muchos casos, parecidos o similitudes a diferentes escalas. En este caso, a estas formas que son iguales a sí mismas en diferentes escalas, se les ha dado en llamar fractales.

La llamada Teoría del Caos es un nuevo paradigma matemático, tan amplio y tan importante como pudo ser en su época la unión entre geometría y cálculo, surgida del pensamiento cartesiano aunque, quizás, por su inmadurez aún no se tenga claro todo lo que puede dar de sí esta nueva forma de pensamiento matemático, que abarca campos de aplicación tan dispares como la medicina, la geología o la economía.

La teoría no tiene un solo padre fundador, sino muchos. Entre ellos destacan Lorenz (meteorólogo), Benoit Mandelbrot (ingeniero de comunicaciones), Mitchell Feigenbaum (matemático), Libchaber (físico), Winfree (biólogo), Mandell (psiquiatra), y otros muchos, la mayoría de ellos vivos actualmente.


[editar] Aplicaciones y atractores
La Teoría del Caos y la matemática caótica resultaron ser una herramienta con aplicaciones a muchos campos de la ciencia y la tecnología. Gracias a estas aplicaciones el nombre se torna paradójico, dado que muchas de las prácticas que se realizan con la matemática caótica tienen resultados concretos porque los sistemas que se estudian están basados estrictamente con leyes deterministas aplicadas a sistemas dinámicos. Por esta razón la Teoría del Caos ya no es en sí una teoría: tiene postulados, fórmulas y parámetros recientemente establecidos con aplicaciones, por ejemplo, en las áreas de la meteorología o la física cuántica.


[editar] Teoría del caos, aplicación meteorológica
El clima, además de ser un sistema dinámico, es muy sensible a los cambios en las variables iniciales, es un sistema transitivo y también sus órbitas periódicas son densas, lo que hace del clima un sistema apropiado para trabajarlo con matemática caótica. La precisión de las predicciones meteorológicas es relativa, y los porcentajes anunciados tienen poco significado sin una descripción detallada de los criterios empleados para juzgar la exactitud de una predicción.

Al final del siglo XX se ha vuelto común atribuirles una precisión de entre 80 y 85% en plazos de un día. Los modelos numéricos estudiados en la teoría del caos han introducido considerables mejoras en la exactitud de las previsiones meteorológicas en comparación con las predicciones anteriores, realizadas por medio de métodos subjetivos, en especial para periodos superiores a un día. En estos días es posible demostrar la confiabilidad de las predicciones específicas para periodos de hasta cinco días gracias a la densidad entre las orbitas periódicas del sistema, y se han logrado algunos éxitos en la predicción de variaciones anormales de la temperatura y la pluviosidad para periodos de hasta 30 días. No es posible contradecir la confiabilidad de las previsiones para periodos de tiempo más largos debido a que no se han adoptado aún modelos de verificación; no obstante, los meteorólogos profesionales tienden a ponerla en duda.


[editar] Algo más de atractores
Los atractores extraños son curvas del espacio de las fases que describen la trayectoria de un sistema en movimiento caótico. Un sistema de estas características es plenamente impredecible, saber la configuración del sistema en un momento dado no permite predecir con veracidad su configuración en un momento posterior. De todos modos, el movimiento no es completamente aleatorio.

En la mayoría de sistemas dinámicos se encuentran elementos que permiten un tipo de movimiento repetitivo y, a veces, geométricamente establecido. Los atractores son los encargados de que las variables que inician en un punto de partida mantengan una trayectoria establecida, y lo que no se puede establecer de una manera precisa son las oscilaciones que las variables puedan tener al recorrer las órbitas que puedan llegar a establecer los atractores. Por ejemplo, es posible ver y de cierta manera prever la trayectoria de un satélite alrededor de la Tierra; lo que aparece en este caso como algo indeterminado, son los movimientos e inconvenientes varios que se le pueden presentar al objeto para efectuar este recorrido.

2006-12-11 11:12:08 · answer #9 · answered by arturocancun 3 · 0 1

fedest.com, questions and answers