English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
Toutes les catégories

existence d’un élément neutre, existence de symétriques, commutativité, associativité

2006-11-24 17:55:10 · 9 réponses · demandé par Anonymous dans Arts et sciences humaines Philosophie

A aime B... est-ce que B aime A?
A s'aime-t-il?
A aime B , B aime C ... A aime C ?
élément neutre= ensemble vide ?

2006-11-24 18:32:53 · update #1

9 réponses

Tout à fait:
réflexive,pour aimer autrui,il faut d'abord s'aimer soi même
symetrique ,si j'aime quelqu'un,j'aime bien qu'il m'aime
transitive ,si j'aime a qui aime b alors j'aimerai aussi b
enfin il existe un élément neutre,toi et je t'aime bien!

2006-11-24 20:16:43 · answer #1 · answered by sphinx 3 · 1 1

A mon avis, il échappe à toutes lois et mesures.

2006-11-25 03:43:04 · answer #2 · answered by sofjildz 3 · 1 0

compliquer, le '' aime ton prochain comme toi même '' est plus facile pour moi

2006-11-25 10:07:14 · answer #3 · answered by Sirius 5 · 0 0

Je pense que tu devrais d'abord t'assurer de la définition précise de "loi de composition interne".

Bien que je considère que wikipedia n'est pas une source de données fiable, voici son explication:
http://fr.wikipedia.org/wiki/Loi_de_composition_interne

"On nomme loi de composition interne dans un ensemble une opération qui prend deux éléments de l’ensemble pour donner un résultat dans ce même ensemble"

---

Considérons que "aimer" est une opération mathématique. Son symbole mathématique est un coeur stylisé <3.

A aime B s'écrit mathématiquement: A <3 B.

Ces deux éléments A et B sont pris dans l'ensemble des êtres humains contemporains vivants sur la planète aussi-appelée "Terre". Pour simplifier, appelons cet ensemble "l'Humanité", symbole "H".

Est-ce que "A <3 B" donne en résultat un élément de "H"? NON.

Donc l'opération "aimer" n'est pas une loi de composition interne dans "H".

-

Est-ce que l'opération "aimer" peut être une loi de composition interne dans un autre ensemble?

- à un ensemble d'êtres vivants pas uniquement humains: non. Le résultat de l'opération ne donnera jamais quelque être vivant que ce soit et ni quoique ce soit de matériel (sauf pour ceux qui croient que l'émotion amoureuse est directement créatrice).

Réponse à ta question: non, l'opération "aimer" n'est pas une loi de composition interne, et cela quelque soit l'ensemble "concret" considéré.

-

Cela étant dit, rien ne nous empêche de tester les propriétés de cette opération/loi. Considérons qu'elle s'applique dans l'ensemble des êtres vivants/ayant vécu/qui vivront sur notre planète, symbole "V" (comme "vie")

- est-elle commutative dans "V"?
A <3 B =? B <3 A
NON, pas systématiquement dans "V".

- est-elle associative dans "V":
(A <3 B) <3 C =? A <3 (B <3 C)
NON, pas systématiquement dans "V".

- possède-t-elle un élément neutre "e" à droite et/ou à gauche dans l'ensemble "V"?
A <3 e =? A et/ou e <3 A =? A.
NON, parce que le résultat de l'opération "aimer" ne donne jamais en résultat un autre être vivant dans l'ensemble "V". (cf l'autre opération "se reproduire").

- élément symétrique dans "V"?
NON, étant donné que l'opération "aimer" ne comporte pas d'élément neutre dans l'ensemble "V".

- élément idempotent dans "V"?
S <3 S =? S
Non, il ne peut y avoir 2 éléments strictement identiques dans l'ensemble "V" - et même si c'était le cas, le résultat de leur amour n'est pas créateur d'un autre élément de "V".

---

Je pense que l'opération "aimer" peut être une loi de composition interne si on se réfère à un ensemble hypothétique pseudo-métaphysique dans lequel un être vivant peut aimer un "esprit" ou un "fantôme" ou "que sais-je encore" et de leur sentiment d'amour naîtrait un autre "esprit", ou même des choses, d'autres êtres vivants (ceux qui croient que l'amour est directement créateur - psychokinèse, être transcendantal irradiant d'amour créateur, bla bla bla).

Mais cet ensemble-là, je le laisse à ceux qui préfèrent se complaire dedans.

Et ceux qui considèrent que leur progéniture est le fruit/résultat de leur amour, ils passent subrepticement du registre mathématique à celui de la poésie. Cela ressemble à de la philosophie mais ça n'en est pas: c'est de la poésie - et la poésie en devoir de philo, c'est du hors-sujet.

L'opération "aimer" est distincte de l'opération "procréer".

---

J'aime ma compagne, mais j'aime aussi mon chien, j'aime la glace au citron, j'aime la musique punk, et j'aime la course à pieds.

2006-11-25 08:32:58 · answer #4 · answered by Axel ∇ 5 · 0 0

l'Amour a ses raisons que la raison ne connait pas !! Il ne répond a aucune logique et ne peut être une science exacte.

2006-11-25 04:48:31 · answer #5 · answered by café crème 2 · 0 0

pour ma part je ne pense pas

2006-11-25 08:37:49 · answer #6 · answered by Anonymous · 0 1

Il existe un élement neutre, l'indifference
il existe un symétrique la haine
on peut trés facilement passer de l'état 1 à l'état 0 , puis revenir à l'état 0
l'associativité me semble difficile à demontrer dans la mesure ou le principe d'unicité n'est pas forcement
Je dirais qu'en idéal c'est une loi de composition interne
mais dans la pratique humaine la demonstration n'est pas viable
De toute façon nous rasonnons dans l'ensemble des nombre complexe avec amour(2)=-1 alors que dans la vie amour(2) =3, ce qui génére un paradoxe.....

je ne crois pas que si a aime b, b aime forcement a
je dirais que c'est une injection de l'ensemble Amour vers l'ensemble amour mais pas une bijection car A peut aimer n
même la reflexivité est deficile à demontrer A aime-t-il necessaire A???? Tout le probléme de la psychologie

2006-11-25 07:14:53 · answer #7 · answered by Hades et Persephone 7 · 0 1

les mathémathiques est une science éxacte;soit un théorème à démontrer soit un axiome à admettre=c'est de la logique.Alors que l'amour est une supposition par l'absurde d'une fonction généralement représentant ton nom(l'ensemble vide).Donc aucune logique ne peut définir l'amour que sa courbe représentative est sinusoïdale.

2006-11-25 03:01:06 · answer #8 · answered by verseau62 2 · 0 1

interne et exeterne a la fois

2006-11-25 01:56:38 · answer #9 · answered by invaincudu31 5 · 0 1

fedest.com, questions and answers