Je crois que l'exemplaire du Palais de la Découverte en est à plusieurs milliers (voire dizaines de milliers, c'est l'impression sur papier à l'entrée de la salle PI, en section Mathématiques) ...
Sinon, pour ce qui est de ce que je peux citer moi-même, grâce à un moyen mnémotechnique :
Que j'aime à faire connaître ce nombre utile aux sages !Immortel Archimède, artiste, ingénieur,
Qui de ton jugement peut priser la valeur ?
Pour moi ton problème eut de pareils avantages.
Jadis, mystérieux, un problème bloquait
Tout l'admirable procédé, l'œuvre grandiose
Que Pythagore découvrit aux anciens Grecs.
Ô quadrature ! Vieux tourment du philosophe
Insoluble rondeur, trop longtemps vous avez
Défié Pythagore et ses imitateurs.
Comment intégrer l'espace plan circulaire ?
Former un triangle auquel il équivaudra ?
Nouvelle invention : Archimède inscrira
Dedans un hexagone ; appréciera son aire
Fonction du rayon. Pas trop ne s'y tiendra :
Dédoublera chaque élément antérieur ;
Toujours de l'orbe calculée approchera ;
Définira limite ; enfin, l'arc, le limiteur
De cet inquiétant cercle, ennemi trop rebelle
Professeur, enseignez son problème avec zèle
Le record de récitation appartient à un japonais qui a récité 100 000 décimales en 16 heures, selon Wikipedia ...
Pour le record du nombre de chiffres, voir ci-dessous la réponse de Fakriniseb ...
2006-11-22 06:20:36
·
answer #1
·
answered by Dixneuf 6
·
1⤊
0⤋
206 158 430 000 décimales ... :))
cool les mathématiciens japonais
http://www.peripheria.net/recordsl.php
http://trucsmaths.free.fr/images/pi/pi2400.htm
il existe même un poème pour s'en souvenir !!
2006-11-22 14:21:17
·
answer #2
·
answered by fakriniseb 7
·
4⤊
0⤋
Je ne sais pas combien, mais c'est très très important. Les 100 premiers sont très connus, mais il existe une pièce ou le nombre PI est écrit sur les murs (pièce circulaire) en petit caractères sur plusieurs dizaines de lignes. Le calcul est infini.
2006-11-22 14:16:25
·
answer #3
·
answered by opa12j 2
·
1⤊
0⤋
Pi est transcendant, pas seulement irrationnel (voir les définitions).
En réponse à ta question : Quelques millions
2006-11-22 19:38:59
·
answer #4
·
answered by Obelix 7
·
0⤊
0⤋
Et bien en fait, une fois que tu connais le principe et que tu as les ordinateurs pour le faire, tu peux aller aussi loin que tu veux... Tout est question de temps!
Par contre, je crois que le mathématicien qui a calculé les décimales de pi dans la fameuse salle s'est trompé à partir d'un certain rang (à sa décharge, il n'avait pas de calculatrice pour vérifier ses calculs :-p )
2006-11-22 17:00:51
·
answer #5
·
answered by -O- 7
·
0⤊
0⤋
Plusieurs...........
2006-11-22 14:19:57
·
answer #6
·
answered by Anonymous
·
0⤊
0⤋
J'ai ouie dire qu'on était arrivé à la 56 ème décimale
2006-11-22 14:17:21
·
answer #7
·
answered by bruyasha 4
·
0⤊
2⤋
Quinze si mes souvenirs sont exacts !
2006-11-22 14:10:47
·
answer #8
·
answered by Eric MKRDE 2
·
0⤊
2⤋