English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
Todas las categorías

Perdon, tienen razón no iguale la ecuación en la pregunta que hice anteriormente.

2006-11-16 02:45:56 · 5 respuestas · pregunta de Anonymous en Ciencias y matemáticas Ingeniería

5 respuestas

En el primer caso considera que para que te de ese valor, el cos2X tiene que ser = 0, entonces:
cos2x = 0, por lo cual 2x=pi/2 entonces: x=pi/4.

En el segundo caso considera que sen2x=0, entonces 2x=pi quedando x=pi/2

2006-11-16 07:26:46 · answer #1 · answered by Lorenzo Edgardo G 1 · 0 0

Recordá que las funciones seno y coseno son periódicas, por lo que la respuesta que dio LG es correcta pero incompleta. La solución para el seno es pi k /2 donde k es cualquier entero. La solución para el coseno es pi k / 4 donde k es cualquier entero

2006-11-16 14:59:45 · answer #2 · answered by matias o 2 · 0 0

2cos(2x) = 0
cos(2x) = 0
2x = arccos(0)
2x = 90 grados

x = 45 grados
_______________________________


-4sen(2x) = 0
sen(2x) = 0
2x = arcsen(0)
2x = 0

x = 0

___________________________________

(En efecto, tus ecuaciones tienen soluciones múltiples)


Revisa bien tus notas porque yo creo que no está en el lugar correcto el signo "igual". (Pura intuición).

_________________________________

2006-11-16 11:00:35 · answer #3 · answered by Zoquetito 5 · 0 0

Creo que hay mas de una solución para cada una de las ecuaciones.

Para la primera: 2cos(2x)=0

x puede valer Pi/4 con lo que la ecuación te queda:

2cos(Pi/2) y como el coseno de Pi/2 es cero, se comprueba la igualdad.

Para la segunda: -4sen(2x)=0

x puede valer cero, o Pi/2

2006-11-16 10:53:56 · answer #4 · answered by LG 6 · 0 0

En la primera calculá arc.cos de 0 con una calculadora científica y al resultado dividilo en 2.
En la segunda calculá arc.cos de 0 con una calc. científica y dividí en 2 el resultado.
En la primer ecuación, x= 0.785398163 aproximadamente. En la segunda ecuación, x= 0. ¡Puedes verificarlo reemplazando estos valores de x en las respectivas ecuaciones!
Es importante señalar que para el resultado de la primer ecuación x = (pi/2) : 2 = 0.785398163 aprox. (cualquiera de las dos expresiones es correcta)

2006-11-16 10:50:01 · answer #5 · answered by perpleja 6 · 0 0

fedest.com, questions and answers