Sigues este enlace
http://vps.salonhogar.com/ciencias/fisica/estados_materia/estado_solido.htm
2006-11-11 11:26:31
·
answer #1
·
answered by Italiano Libero 5
·
0⤊
0⤋
Física del estado sólido
La física del estado sólido estudia las propiedades físicas de los materiales sólidos utilizando disciplinas tales como la mecánica cuántica, la cristalografía, el electromagnetismo y la metalurgia física. Forma la base teórica de la ciencia de materiales y su desarrollo ha sido fundamental en el campo de las aplicaciones tecnológicas de microelectrónica al posibilitar el desarrollo de transistores y materiales semiconductores.
Introducción
Los cuerpos sólidos están formados por átomos densamente empaquetados con intensas fuerzas de interacción entre ellos. Los efectos de interacción son responsables de las propiedades mecánicas, térmicas, eléctricas, magnéticas y ópticas de los sólidos.
Una característica importante de la mayoría de los sólidos es su estructura cristalina. Los átomos están distribuidos en posiciones regulares que se repiten regularmente de manera geométrica. La distribución específica de los átomos puede deberse a una variada gama de fuerzas. Por ejemplo, algunos sólidos como el cloruro de sodio o sal común se mantienen unidos por enlaces iónicos debidos a la interacción electrostática entre los iones que componen el material. En otros, como el diamante, los átomos comparten electrones, lo que da lugar a los llamados enlaces covalentes.
Las sustancias inertes, como el neón, no presentan ninguno de esos enlaces. Su existencia es el resultado de unas fuerzas de atracción conocidas como fuerzas de Van der Waals, así llamadas en honor al físico holandés Johannes Diderik van der Waals. Estas fuerzas aparecen entre moléculas o átomos neutros como resultado de la polarización eléctrica. Los metales, por su parte, se mantienen unidos por lo que se conoce como gas electrónico, formado por electrones libres de la capa atómica externa compartidos por todos los átomos del metal y que definen la mayoría de sus propiedades.
Estructura cristalina
Explicar porque se forma la estructura, incluyendo fuerzas actuantes, etc.
Comportamiento electrónico en los cristales
El comportamiento de los electrones está regido por las leyes de la mecánica cuántica, por lo tanto:
Los electrones no pueden tener cualquier nivel de energía: los estados de energía están cuantificados. A un conjunto de niveles de energía muy cerca entre sí se lo denomina banda de energía y se la considera continua.
No todas las bandas se ocupan uniformemente, sino que algunas son más probables de ser ocupadas que otras, incluso hay bandas totalmente desocupadas, o sea que la probabilidad de que un eléctrón tenga ese nivel de energía es nula o muy cercana a cero.
Modelo de Kronig-Penney
Modelo simple
Poner un nombre más adecuado y hacer el artículo correspondiente. ¿Modelo de los enlaces covalentes?Usualmente, se presenta este esquema basado en el modelo atómico de Bohr y el principio de exclusión de Pauli. Supóngase una red cristalina formada por átomos de silicio. Cuando los átomos están aislados, el orbital s (2 estados con dos electrones) y el orbital p (6 estados con 2 electrones y cuatro vacantes) tendrán una cierta energía Es y Ep respectivamente (punto A). A medida que disminuye la distancia interatómica comienza a observarse la interacción mutua entre los átomos, hasta que ambos orbitales llegan a formar, por la distorsión creada, un sistema electrónico único. En este momento se tienen 8 orbitales híbridos sp³ con cuatro electrones y cuatro vacantes (punto B).
Si se continúa disminuyendo la distancia interatómica hasta la configuración del cristal, comienzan a interferir los electrones de las capas internas de los átomos, formándose bandas de energía (punto C). Las tres bandas de valores que se pueden distinguir son:
Banda de Valencia. 4 estados, con 4 electrones.
Banda Prohibida. No puede haber electrones con esos valores de energía en el cristal.
Banda de Conducción. 4 estados, sin electrones.
Distribución probabilísitica de los electrones en las bandas
Los electrones no se distribuyen uniformementes en las diferentes bandas, sino que algunas son más probables a ser ocupadas que otras. La probabilidad de ocupación de las bandas está dada por la estadística de Fermi-Dirac, y el parámetro más importante es la energía de Fermi.
Conductividad eléctrica
La conducción eléctrica en un sólido se presenta en las bandas casi llenas o casi vacías.
2006-11-12 04:22:49
·
answer #2
·
answered by nitzahom 5
·
0⤊
0⤋
Las propiedades físicas de los sólidos, tales como temperatura de fusión, capacidad para conducir la corriente, resistencia a la deformación, dureza, etc., dependen de las características de las fuerzas de enlace que unen las entidades elementales. Así, los sólidos iónicos, como las sales, son duros y a la vez frágiles, con puntos de fusión altos. Aunque son malos conductores de la electricidad sus disoluciones, sin embargo, presentan una conductividad elevada. Los sólidos formados por moléculas apolares, como el Cl2, el H2 o el CO2, son blandos como corresponde a la debilidad de las fuerzas de interacción entre ellas (fuerzas de Van der Waals). Presentan un punto de fusión bajo lo que indica que sólo a bajas temperaturas, las débiles fuerzas ordenadores del enlace pueden predominar sobre el efecto disgregador del calor. Su conductividad eléctrica es extremadamente baja como corresponde a la ausencia de cargas libres.
2006-11-11 22:53:12
·
answer #3
·
answered by aquarios 5
·
0⤊
0⤋
Propiedades físicas de sólidos y líquidos
Sustancias químicas puras. Medición. Solubilidad. Fusión. Densidad. Conductividad. Reactividad. Viscosidad
EL ESTADO SÓLIDO
Características de los sólidos cristalinos
En el estado sólido, las moléculas, átomos o iones que componen la sustancia considerada están unidas entre sí por fuerzas relativamente intensas, formando un todo compacto. La mayor proximidad entre sus partículas constituyentes es una característica de los sólidos y permite que entren en juego las fuerzas de enlace que ordenan el conjunto, dando lugar a una red cristalina. En ella las partículas ocupan posiciones definidas y sus movimientos se limitan a vibraciones en torno a los vértices de la red en donde se hallan situadas. Por esta razón las sustancias sólidas poseen forma y volumen propios.
La mayor parte de los sólidos presentes en la naturaleza son cristalinos aun cuando en ocasiones esa estructura ordenada no se refleje en una forma geométrico regular apreciable a simple vista. Ello es debido a que con frecuencia están formados por un conjunto de pequeños cristales orientados de diferentes maneras, en una estructura policristalina. Los componentes elementales de una red cristalina pueden ser átomos, moléculas o iones, de ahí que no se pueda hablar en general de la molécula de un cristal, sino más bien de un retículo elemental o celdilla unidad, que se repite una y otra vez en una estructura periódica o red cristalina.
Las propiedades físicas de los sólidos, tales como temperatura de fusión, capacidad para conducir la corriente, resistencia a la deformación, dureza, etc., dependen de las características de las fuerzas de enlace que unen las entidades elementales. Así, los sólidos iónicos, como las sales, son duros y a la vez frágiles, con puntos de fusión altos. Aunque son malos conductores de la electricidad sus disoluciones, sin embargo, presentan una conductividad elevada. Los sólidos formados por moléculas apolares, como el Cl2, el H2 o el CO2, son blandos como corresponde a la debilidad de las fuerzas de interacción entre ellas (fuerzas de Van der Waals). Presentan un punto de fusión bajo lo que indica que sólo a bajas temperaturas, las débiles fuerzas ordenadores del enlace pueden predominar sobre el efecto disgregador del calor. Su conductividad eléctrica es extremadamente baja como corresponde a la ausencia de cargas libres.
Los sólidos formados por moléculas polares, como el agua, presentan características intermedias entre ambos tipos de sólidos, los iónicos y los apolares. Las características del enlace metálico con un gas de electrones externos compartidos hace que los sólidos metálicos sean buenos conductores de la electricidad y del calor, y dúctiles y maleables, aunque con elevados puntos de fusión. Un tipo de sólido de propiedades extremas lo constituyen los sólidos covalentes; están formados por una red tridimensional de enlaces atómicos fuertes que dan lugar a propiedades tales como elevados puntos de fusión, escasa conductividad y extraordinaria dureza. El diamante, que es carbono puro cristalizado, constituye un ejemplo de este tipo de sólidos.
Teoría de bandas en los sólidos
Todos los sólidos cristalinos presentan una estructura periódica, por lo que un electrón genérico que se viese sometido a la influencia de la red cristalina poseería una energía potencial que variaría también de una forma periódica en las tres direcciones del espacio. Esta situación se traduce, de acuerdo con la mecánica cuántica, en que cada uno de los niveles de energía que correspondería a un átomo aislado se desdobla tanto más cuanto mayor es el número N de átomos constitutivos de la red, dando lugar a una serie de niveles prácticamente contiguos que en conjunto constituyen una banda de energía.
El número máximo de electrones que pueden ocupar una banda determinada viene limitado por el principio de exclusión de Pauli que indica que en cada nivel atómico se pueden acomodar, a lo más, dos electrones y siempre que sus espines respectivos sean opuestos; por tal motivo en una cualquiera de las bandas correspondientes a una red cristalina formada por N átomos iguales, podrán acomodarse como máximo 2N electrones.
Las bandas de energía en un sólido cristalino desempeñan el mismo papel que los niveles electrónicos de un átomo aislado e incluso se representan de la misma manera mediante las letras s, p, d, f, etc.; por tanto, la energía de un electrón en un sólido sólo puede tomar valores comprendidos en alguna de las múltiples bandas de energía del sólido.
En algunos tipos de sólidos las bandas pueden solaparse y en otros, sin embargo, los correspondientes diagramas de energía aparecen separados por espacios intermedios que representan valores de la energía que no pueden poseer los electrones; por ello se les denomina bandas prohibidas.
La teoría de bandas permite explicar con una excelente aproximación el fenómeno de la conducción eléctrica en los sólidos. En algunos sólidos, la última banda no está ocupada completamente, lo que permite a los electrones de esa banda ganar energía por la acción de un campo eléctrico externo y desplazarse por la red.
La mayor parte de los metales presentan, no obstante, bandas superiores incompletas que se superponen entre sí permitiendo, asimismo, la movilidad de los electrones que son excitados por un campo eléctrico. Este movimiento de cargas en el seno de la red cristalina constituye una corriente eléctrica.
Una gran mayoría tanto de sólidos iónicos como de covalentes, son malos conductores de la electricidad (aisladores). En ellos la banda más alta conteniendo electrones (banda de valencia) está completamente llena.
Ello supone, de acuerdo con el principio de exclusión de Pauli, que los electrones no pueden ganar energía y saltar de un nivel a otro dentro de la banda, lo que equivale a restringir su movilidad al entorno de su núcleo atómico.
Además la siguiente banda vacía (banda de conducción) está lo suficientemente separada de aquélla como para que la banda prohibida no pueda ser salvada por la acción de un campo eléctrico ordinario. Tal circunstancia explica su reducida conductividad eléctrica.
Existen algunos sólidos como el silicio y el germanio que tienen una estructura de bandas semejante a la de los aisladores. Sin embargo, en ellos la banda prohibida que separa la de valencia, completamente llena, y la de conducción, completamente vacía, es estrecha, de modo que es posible excitar los electrones más altos de la banda de valencia y transferidos a la de conducción.
En tal caso se puede hablar tanto de una conducción por los electrones de la banda superior, como de conducción por los huecos que se generan en la banda inferior y que se comportan como cargas positivas. Se trata de sólidos semiconductores. El hecho de que su banda prohibida sea estrecha permite bombear electrones a la banda de conducción sin más que elevar suficientemente la temperatura.
Los semiconductores constituyen los materiales sólidos clave en la fabricación de dispositivos electrónicos. Sus propiedades, mejoradas y aprovechadas gracias a la investigación básica y aplicada, no sólo han constituido un elemento clave en el desarrollo de la informática, la instrumentación científica de alto nivel y las telecomunicaciones, sino también en el diseño de aparatos electrodomésticos y de uso habitual.
2006-11-11 19:29:02
·
answer #4
·
answered by mabel l 3
·
1⤊
1⤋
Los gases, líquidos y sólidos pueden ser distinguidos debido a que algunas de sus propiedades son diferentes. Por ejemplo, el agua sólida (hielo) tiene forma y volumen bien definidos, pero si fundimos el hielo hasta obtener agua líquida vemos que aunque el volumen sigue estando bien definido, la forma ya no: el agua líquida toma la forma del recipiente que la contiene. Si procedemos a evaporar el agua, ni siquiera el volumen está bien definido: el vapor de agua llena completamente el recipiente que lo contiene. El que una cantidad de materia cambie su forma o su volumen no altera la cantidad de masa. En 1 Kg de gas hay tanta materia como en 1 Kg de sólido. Si para los cambios de estado mencionados empezamos con 1 Kg de hielo, terminaremos con 1 Kg de vapor de agua. Si el sólido parece "más pesado" es porque el sólido tiene una mayor densidad. Los sólidos tienen densidades altas, un poco mayores a los líquidos, mientras que los gases tienen densidades muy bajas. Como ejemplo, el plomo (Pb, un metal muy denso) tiene una densidad de 11.340 g/mL, mientras que el agua tiene una densidad de 1 g/mL. El nitrógeno (N), el componente más abundante del aire, tiene una densidad de apenas 0.00125 g/mL.
2006-11-11 19:19:23
·
answer #5
·
answered by Anonymous
·
0⤊
0⤋