English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
Todas las categorías

De que se trata la fisica cuantica y en que lugar existe buena información

2006-11-04 07:27:56 · 6 respuestas · pregunta de Anonymous en Ciencias y matemáticas Física

De que se trata la fisica cuantica y en que lugar existe buena información.
¿fisica cuantica es lo mismo que mecanica cuantica?

2006-11-06 12:00:00 · update #1

6 respuestas

Hola, espero que esto te pueda ayudar, Saludos

¿Por qué cuántica?
Einstein dio una buena explicación y analogía con la vida real acerca del significado de la palabra cuántica y cuantos. En su libro “La física, aventura del pensamiento” dice que por ejemplo en una mina de carbón la producción puede variar en un modo continuo, si aceptamos cualquier unidad de medida por mas pequeña que sea. Es decir podríamos decir que se produjo 1 granito mas de carbón que ayer. Lo que no podemos hacer es expresar la variación de personal en forma continua, no tiene sentido hablar de que se aumento el personal en 1,80 personas, es decir la medida de la cantidad de personal es discreta y no continua. Otro ejemplo, una suma de dinero solo puede variar de a saltos, discontinuamente. La unidad mínima para el dinero es el centavo. Decimos entonces que ciertas magnitudes cambian de una manera continua y otras de una manera discontinua o discreta, o sea por cantidades elementales o pasos que no pueden reducirse indefinidamente. A estos pasos mínimos e indivisibles, se los llama cuantos elementales de la magnitud en cuestión. Es evidente que al aumentar la precisión de cómo se realizan las medidas de cualquier tipo de magnitud, unidades que se consideraban indivisibles dejen de serlo y adoptan un valor aun menor. O sea ciertas magnitudes que se consideran continuas pueden tener una naturaleza discreta.

En física, ciertas magnitudes consideradas por muchos años como continuas, en realidad están compuestas de cuantos elementales. La energía es una de estas magnitudes que al estudiar los fenómenos del mundo de los átomos, se detecto que su naturaleza no era continua sino discreta y que existe una unidad mínima o cuanto elemental de energía. Este fue el descubrimiento de Max Planck con el que se inicia la teoría cuántica.

Cuanto o quantum utilizado como un sustantivo se refiere a la cantidad más pequeña de algo que es posible tener. En el mundo de la física clásica existe el concepto de que todos los parámetros físicos como por ejemplo la energía, la velocidad, la distancia recorrida por un objeto, son continuos. Para entender que es esto de continuos, pensemos en el termómetro que mide la temperatura, cuando vemos que la misma aumenta en un grado en realidad aumento primero en una décima de grado y así siguiendo antes en una millonésima de grado etc., etc. Es decir el proceso de aumento de temperatura que medimos con el termómetro decimos que es continuo. Bien en el mundo de la física cuántica esto no es así, en concreto cuando Max Planck estudió como se producía la radiación desde un cuerpo incandescente, su explicación fue que los átomos que componen el cuerpo incandescente, cuando liberaban energía en forma de radiación, lo hacían no en forma continua, sino en pequeños bloques a los que él denominó cuantos de energía. Lo extraño de todo este proceso o de la explicación de Planck es que no existen posiciones intermedias, es decir no existen medios cuantos o un cuarto de cuanto. Es como si en el caso del termómetro no existiera la fracción de grado, simplemente la temperatura que está en 20º pasa de golpe a 21º. Decimos extraño porque lo que el sentido común indica es que la temperatura de un objeto aumenta cuando este recibe calor/energía; si el cuerpo está en 20º y le doy calor en una pequeña cantidad, no será suficiente para que aumente en un grado a 21º pero si para que algo aumente. En el mundo cuántico es como si esas pequeñas cantidades se van almacenando en algún lugar sin manifestarse de ninguna forma (sin aumento de temperatura del cuerpo), para que de repente cuando la cantidad de calor transmitida alcanzó un valor tal que el termómetro muestra ahora sí un aumento de 1º, marcando 21º. ¿qué pasó en el medio?. Bueno esto que si bien no ocurre en el caso de la temperatura sino que es solo una analogía para entender, es lo que efectivamente ocurre en el mundo cuántico. Todas las partículas que componen el universo físico se deben mover en saltos cuánticos. Un cuerpo no puede absorber o emitir energía luminosa en cualquier cantidad arbitraria sino solo como múltiplos enteros de una cantidad básica o cuanto. Volviendo a la extrañeza de estos fenómenos, imaginemos por un momento otra analogía: estamos arrojando piedras en un estanque de agua tranquilo. El sentido común dado por la experiencia que acumulamos en el tiempo nos dice que al hacer esto se producirán ondas en el estanque que son producto de la energía que la piedra transmitió al caer al agua. Un estanque cuántico, se comportaría de diferente forma, al arrojar una o varias piedras nada ocurrirá, y de repente sin que medie ninguna conexión entre la causa (arrojar piedras) y el efecto (se generan ondas en la superficie), el estanque comenzará a vibrar con ondas, hasta que de repente se tranquilizará nuevamente por mas que en ese momento estemos lanzando piedras. Si todas las piedras son del mismo tamaño, y arrojadas desde la misma altura, entregarán al caer la misma cantidad de energía al agua. Si dicha cantidad de energía resulta ser inferior al cuanto de energía, entonces debemos arrojar mas de una piedra para iniciar el movimiento.

Quiero recalcar la extrañeza de este fenómeno, llamando la atención sobre el hecho de que el cuanto no es una cantidad que pueda subdividirse, es decir, el concepto de continuidad pierde significación, entre 0 y el cuanto no existe nada. Son estados que la naturaleza no permite. Esta es la característica esencial del descubrimiento de Planck al estudiar los fenómenos llamado radiación del cuerpo negro (tema que se desarrollara mas adelante): existe un límite inferior al cambio de energía (absorción o emisión de energía en forma de luz) que un átomo puede experimentar.

Física clásica vs. Física cuántica, sus diferencias

Durante mas de 200 años desde los días de Newton, hasta el final de del siglo XIX, los físicos habían construido una visión del mundo increíblemente elaborada y básicamente mecánica. El universo entero se suponía que trabajaba como un gigantesco reloj, en cuyo interior se podía conocer y predecir hasta el mas mínimo detalle de funcionamiento. Por medio de las leyes de la gravedad, del calor, de la luz y el magnetismo, de los gases, los fluidos y los sólidos; cada aspecto del mundo material podía ser en principio parte de un vasto mecanismo lógico. Cada causa física, generaba algún efecto predecible, cada efecto observado podía ser rastreado a una única y precisa causa. La tarea de los físicos era justamente rastrear esas articulaciones entre causa y efecto, de manera de poder hacer que el pasado fuera entendible y el futuro predecible, la acumulación del conocimiento teórico-experimental se tomaba sin discusión para brindar una visión coherente del universo aun con un enfoque mas agudo y preciso. Cada nueva pieza de conocimiento agregaba otro engranaje al reloj del universo. Esta era la situación a final del siglo XIX, los físicos clásicos aspiraban a explicar con una claridad cada vez mas precisa hasta el ultimo confín de este universo mecánico. A pesar de todo, como ya vimos había algunas nubes oscuras que aun no podían explicarse desde la visión clásica, y sobre todo cuando se quiso extrapolar los conceptos clásicos al interior del átomo, allí la debacle fue total. Dentro de la física clásica, estamos acostumbrados a pensar acerca de las propiedades físicas de las cosas como algo intrínseco de ellas y con valores definidos, a los cuales tratamos de medir. Pero en esta nueva rama de la física, nos encontramos con que es el proceso de medición utilizado el que dará un valor determinado para una cantidad física. Para ponerlo en una forma mas clara: en física clásica, convencionalmente pensamos a un sistema físico como poseedor de ciertas propiedades y así, imaginamos y llevamos a cabo experimentos que nos proveen información acerca de ese sistema pre-existente. En física cuántica, solo la conjunción de un sistema con un mecanismo de medición especifico nos dará un resultado definido, y dado que diferentes mecanismos de medición producirán resultados que tomados en conjunto son incompatibles con la pre-existencia de algunos estados definidos, no podemos definir o establecer ninguna clase de realidad física a menos que describamos no solamente el sistema físico bajo estudio, sino también y con igual importancia, el tipo de medición que intentamos realizar. Esto es lo que vimos cuando decíamos que la luz se comporta como onda y como partícula según que tipo de medición hagamos. Esta conclusión o diferencia entre la física clásica y la cuántica, es realmente difícil de aceptar y comprender. Durante siglos nuestro conocimiento adquirido se fundamentaba en la premisa básica que nos habla de la existencia de una realidad externa objetiva y definida, independientemente de cuan poco o mucho conozcamos de ella. Es difícil encontrar el lenguaje o los conceptos para manejar una idea de realidad que solo llega a materializarse en algo real (valga la redundancia) cuando es medida, es decir cuando es observada. La luz es una partícula cuando colocamos detectores para medir la llegada de partículas, de lo contrario, la luz sufre interferencias, refracción y difracción como su comportamiento ondulatorio así lo determina.

Notemos otra diferencia crucial entre ambas físicas, el principio de incertidumbre, que solo existe en la cuántica. Este principio que dice que no podemos conocer simultáneamente dos variables complementarias como la velocidad y la posición de una partícula. Para los clásicos si medimos una propiedad intrínseca de una partícula, una vez realizada dicha medición, sabremos con exactitud el estado de dicha partícula y podríamos predecir el resultado de cualquier medición futura. Para los cuánticos, el acto de medición es un evento donde interactúan el que mide/observador y lo que es medido/observado para conjuntamente producir un resultado. El proceso de medición no significa determinar el valor de una propiedad física pre-existente. El principio de incertidumbre esta íntimamente ligado a la naturaleza probabilística de las mediciones cuánticas, esto significa que la mecánica cuántica predice acerca de la probabilidad de obtener tal o cual resultado, pero nunca puede con certeza decir en un caso individual que es lo que va a ocurrir.

Avancemos un poco mas en este tema de los comportamientos probabilísticos. Si arrojamos una moneda al aire diremos que las chances de obtener cara o seca serán de un 50 %. Si tuviéramos un mecanismo perfecto de observación, podríamos predecir cada vez que arrojamos las moneda cual será el resultado ( si cara o seca). Podemos decir entonces que el concepto de probabilidad aquí esta cubriendo nuestra ignorancia en la medición por no contar con un mecanismo perfecto. En física cuántica el concepto probabilístico es diferente. La probabilidad no cubre falta de información sino que es una característica intrínseca de la naturaleza. Veremos mas adelante cuando hablemos de Electrodinámica Cuántica (QED), que un fotón dentro de un haz de luz, tiene cierta probabilidad de pasar el vidrio o de reflejarse en el, sin ninguna explicación racional de porque algunos pasan y otros se reflejan, cuando todos provienen de la misma fuente y forman parte del mismo haz en las mismas condiciones. Bien esto que Einstein nunca acepto, parecería ser como la naturaleza se comporta a nivel micro sin importar si podemos entenderlo o no.

Este es un excelente sitio: http://www.geocities.com/fisica_que/

2006-11-09 01:27:45 · answer #1 · answered by El guardian 3 · 1 0

esto está mas completo

http://bit.ly/1pLpM6z

2015-09-09 11:30:34 · answer #2 · answered by ? 3 · 2 0

Para que te des una idea simple pero completa, de todas las ramas de la física:

Se divide en tres ramas:

Física Clásica: Es el estudio de objetos de dimensiones macroscópicas a velocidades muy pequeñas, un auto por ejemplo. O una estructura como un edificio.

Física Relativista: Estudio de cuerpos grandes (macroscópicos) a velocidades muy grandes; ejemplo: cómo te moverías a la velocidad de la luz.

Física cuántica: Estudio de cuerpos pequeños (microscópicos) a velocidades muy grandes. Ejemplo: la luz, los átomos, etc.


Se crearon estas subdivisiones por una causa en especial: el comportamiento de las partículas de tamaños muy distintos (un perro o un átomo), se comportan de manera distinta y no se rigen por las mismas leyes, lo que ha ocasionado grandes problemas a los físicos, al tratar de unificar ciertas reglas para ello. Espero te sea de ayuda la información.

2006-11-05 12:58:12 · answer #3 · answered by Jair S C 4 · 1 1

trata sobre la dualidad onda / partícula de la luz
trata sobre la imposibilidad de aplicar la física clásica a nivel de las partículas subatómica, en este caso del electrón...

2006-11-04 11:33:07 · answer #4 · answered by luis623623 6 · 1 1

Antes de la teoría cuántica se creía que desde lo muy grande como el universo a lo muy pequeño como las partículas subatómicas se podían estudiar por medio de las leyes de la física clásica, (Laplace: determinismo), pero a medida que avanzábamos hacia lo muy pequeño notamos que los experimentos no coincidían con la predicciones “clásicas” no era lo mismo calcular la posición y velocidad de un electrón alrededor del núcleo de un átomo que la de un planeta alrededor del sol.

Esto ocurre porque al planeta lo vemos y lo seguimos con instrumentos, pero a un electrón para saber su posición tenemos que “detectarlo” y al detectarlo lo perturbamos y en consecuencia no podemos predecir con exactitud su posición y velocidad futura (principio de incertidumbre de Heisenberg).

Para salvar este inconveniente surgió la mecánica cuántica en la que en lugar de velocidad y posición, a las partículas se les aceptaba una naturaleza ondulatoria con cuatro números cuánticos que la definían y solo daba valores posibles para cantidades discretas de estos números cuánticos, (ecuación de onda de Shrodinger), esta ecuación da la probabilidad de que una partícula se encuentre en un determinado lugar y no su posición exacta, así se logró la concordancia entre la visión probabilística de los elementos de la materia y los datos experimentales.
Intrnet esta repleta de información, no te doy una en particular por cuanto ignoro tu nivel de conocimientos en la materia.

2006-11-04 07:41:06 · answer #5 · answered by Fotón 5 · 1 1

se trata de como se comportan las particulas subatomicas osea objetos mas pequños que los atomos.
busca con el google libors de fisica cuantica y sobre todo a Steven hoopkings (no esto yseguuiro que es escribe asi pero el google te corrige

2006-11-04 07:36:32 · answer #6 · answered by carbajalcorp 3 · 1 2

fedest.com, questions and answers