Si delta<0 il y a deux solutions complexes
(-b+i racine de delta)/2a et (-b-i racine de delta)/2a
2006-10-16 18:41:55
·
answer #1
·
answered by Anonymous
·
1⤊
0⤋
Dans C une equation du nieme degré a toujours n solution.
Pour le cas du second degré les racines sont conjuguées.
2006-10-17 05:10:49
·
answer #2
·
answered by B.B 4
·
0⤊
0⤋
Si Delta est <0, il n'a pas de racine carrée réelle, mais 2 imaginaires:+ et - i*rac (-Delta) et les deux solutions de l'équation ont la même formule que si Delta>0, avec la valeur absolue de Delta et i en +! (rappel: i^2= -1 par définition)
2006-10-16 08:26:55
·
answer #3
·
answered by Sceptico-sceptiiiiico 3
·
0⤊
0⤋
une equation de degré n a toujours au moins une solution dans C
(theoreme de d'alembert gauss). Ce resultat magnifique est parfois appele theoreme fondamental de l'algebre, c'est dire son importance. Ceci permet de factoriser n'importe quel polynome en produit de polynomes de degré 1.
tu vois que dans R, toutes les equations n'ont pas de solutions, comme dans le cas du d° 2 ou Delta<0. Alors les solutions seront complexes non reelles (du type a+ib avec b reel non nul)
2006-10-16 05:44:11
·
answer #4
·
answered by trash k 2
·
0⤊
0⤋
C'est un des principaux intérêts des nombres complexes que de permettre aux équations du second degré d'avoir toujours 2 solutions de la forme a+ib. Si b est non nul, le nombre est imaginaire.
2006-10-16 04:17:05
·
answer #5
·
answered by Sergão 1
·
0⤊
0⤋
equation du second degre a coeff reel avec delta strictement negatif admet deux racines complexes conjugueees sous la forme
(-b+i racine(valeur absolue de delta) )/(2a)
(-b-i racine(valeur absolue de delta) )/2a
pour une equation de la forme ax^2+bx+c
2006-10-16 04:14:55
·
answer #6
·
answered by M^3-momo 3
·
0⤊
0⤋
pour delta <0, il y a 2 solutions imaginaires : si on a ax²+bx+c, alors les 2 solutions sont :
(-b+iV-delta)/(2a) et (-b-iV-delta)/(2a)
V-delta = racine carrée de (- delta)
2006-10-16 04:10:14
·
answer #7
·
answered by Lo 4
·
0⤊
0⤋
tu te fais chier pour rien. En eq 2° degré complexe, tu passe par Euler, et c'est du tout cuit.
2006-10-16 04:04:45
·
answer #8
·
answered by titus95 6
·
0⤊
0⤋
désolé.
je voudrais bien.
je peux point.
2006-10-16 09:58:44
·
answer #9
·
answered by ouimai 7
·
0⤊
1⤋
Alors pour une équation du second degrès, si delta = 0, il n'y a qu'une seule solution : c'est -b / 2a
Ce n'est pas du tt un nombre complexe, c'est un nombre comme les autres...
je précise qd meme au cas ou qu'une équation du second degré s'écrit : a xcarré + bx + c
Courage !!
2006-10-16 04:02:41
·
answer #10
·
answered by nonolie26 3
·
0⤊
1⤋