Voilà, j'ai un petit problème.
Je voulais définir le logarithme partout dans C (corps des complexes)
J'ai donc pensé à utiliser comme ensemble d'arrivée C/(2i pi),
et tant qu'à faire, je me suis placé dans la sphère de Riemann, et j'ai complété C/(2i pi)
J'ai donc une fonction ln définie de C U {inf} dans C/(2i pi) U {-inf, +inf} par: ln(0) = -inf, ln(inf) = +inf, ln(r e^it) = ln r + it [2i pi]
La continuité, ça va, mais maintenant comment je fais pour dériver cette fonction?
2006-09-25
10:55:07
·
4 réponses
·
demandé par
Cecil B.
5
dans
Sciences et mathématiques
➔ Mathématiques
gco111: Certes Wikipedia pose bien le problème, mais ne m'avance pas plus.
Le scientifique: Je cherche une solution globale, sur C U {inf}
nu'fi: Si, le ln en question est continu en 0 et inf. (pt M>0, ex N>0 (exp M par ex.) tq |z| > N => Re(ln z) > M, donc ln continue en inf, par exemple)
2006-09-26
11:44:13 ·
update #1