Un fractal es un objeto geométrico cuya estructura básica se repite en diferentes escalas. El término fue propuesto por Benoît Mandelbrot en 1975. En muchos casos los fractales pueden ser generados por un proceso recursivo o iterativo capaz de producir estructuras autosimilares independientemente de la escala específica. Los fractales son estructuras geométricas que combinan irregularidad y estructura.
Imagen del fractal conocido como conjunto de Mandelbrot.
En la naturaleza también aparece la geometría fractal, como en este romanescu.Aunque muchas estructuras naturales tienen estructuras de tipo fractal, un fractal matemático es un objeto que tiene por lo menos una de las siguientes características:
Tiene detalle en escalas arbitrariamente grandes o pequeñas.
Es demasiado irregular para ser descrito en términos geométricos tradicionales
Tiene auto-similitud exacta o estadística
Su dimensión de Hausdorff-Besicovitch es mayor que su dimensión topológica e incluso fraccionaria
Es definido recursivamente.
El problema con cualquier definición de fractal es que existen objetos que uno quisiera llamar fractal, pero que no satisfacen ninguna de las propiedades anteriores.
Por ejemplo, fractales de la naturaleza como nubes, montañas y vasos sanguíneos, tienen límites inferiores y superiores en detalle; no existe un término preciso para "demasiado irregular"; existen diferentes maneras para definir "dimensión" con valores racionales; y no todo fractal es definido recursivamente. Los fractales estocásticos están relacionados con la teoría del caos.
Categorías
Los fractales pueden ser divididos en tres amplias categorías, y posiblemente de carácter recursivo.
En resumen, una técnica análoga a la que los biólogos aplican al concepto de vida. En efecto, los fractales, como los seres vivos, satisfacen la mayor parte de las propiedades de una lista, pero algunos de ellos -fractales o seres vivos- carecen de alguna de ellas y, sin embargo, entran en la categoría correspondiente.
Aplicaciones
Técnicas de fractales han sido utilizadas en la compresión de datos, así como en una variedad de disciplinas científicas.
Existen pruebas para la compresión de imágenes utilizando la geometría fractal junto con el teorema del collage, basándose en encontrar las transformaciones lineales que hacen que al aplicarlas reiteradas veces obtengamos la imagen procesada en cuestión. Lamentablemente, aún siguen siendo de tiempo asimétrico, es decir, se tarda aun mucho en encontrar las transformaciones que definen la imagen. No obstante, una vez encontradas, la decodificación es muy rápida, solo hay que iterar el sistema. La compresión aunque dependa de muchos factores suele ser equiparable a la compresión JPEG, con lo cual el factor tiempo resulta determinante para decantarse por una u otra compresión.
También cabe destacar su aplicación al mundo de las artes plásticas y especialmente de la música.
Intuitivamente. Las formas fractales, las formas en la que las partes se asemejan al todo, están presentes en la materia biológica, junto con las simetrías (las formas básicas que solo necesitan la mitad de información genética) y las espirales (Las formas de crecimiento y desarrollo de la forma básica hacia la ocupación de un mayor espacio), como las formas más sofisticadas en el desarrollo evolutivo de la materia biológica en cuanto que se presentan en procesos en los que se producen saltos cualitativos en las formas biológicas, es decir posibilitan catástrofes (hechos extraordinarios) que dan lugar a nuevas realidades más complejas, como las hojas que presentan una morfología similar a la ramita de la que forman parte, que a su vez presentan una forma similar a la rama, que a su vez es similar a la forma del árbol, y sin embargo cualitativamente no es lo mismo una hoja (forma biológica simple), que una rama o un árbol (forma biológica compleja). Pero además las formas fractales (desde esta concepción intuitiva) no solo se presentan en las formas espaciales de los objetos sino que se observan en la propia dinámica evolutiva de los sistemas complejos (ver teoría del caos). Dinámica que consta de ciclos (en los que partiendo de una realidad establecida simple acaban en la creación de una nueva realidad más compleja) que a su vez forman parte de ciclos más complejos que a su vez forman parte del desarrollo de la dinámica de otro gran ciclo, que .... y las evoluciones dinámicas de todos estos ciclos presentan las similitudes propias de los sistemas caóticos. Se usan también como punto de unión entre el arte y la ciencia, un ejemplo de eso es el científico-poeta chileno-alemán Mario Markus
Fractalismo, Teoría del Caos y Ciencias Sociales
Una pequeña visión de un nuevo paradigma científico
Gracias al advenimiento de la geometría de los fractales, varias ciencias particulares pueden hoy tomar sus conceptos y aprovecharlos en sus respectivas áreas de conocimiento. Está surgiendo de este modo una compleja matriz científica, que puede servir para hacer de soporte a todas las ciencias particulares. Una suerte de Ciencia Madre.
Las ciencias sociales, por ejemplo, pueden utilizar muchos conceptos abstractos de los fractales y de la teoría del caos, proponiendo nuevas teorías o profundizando las clásicas, pero enriquecidas por el nuevo paradigma.
Marx, para citar un ejemplo, realizó intuitivamente el "análisis fractal" de la economía política, estudiando la "mercancía" como la pieza raíz (la ecuación fundamental), de la cual obtenía el "árbol" completo de la sociedad capitalista, esto es, el fenómeno integral. En ese sentido, Marx veía el germen del sistema capitalista en su partícula económica celular, la mercancía, mínima expresión de la cual emanan todas las contradicciones sociales que luego se iteran a través de todo el sistema, preñándolo de su esencia y contradicciones. La "mercancía" es la quintaesencia de la sociedad "mercantil" en la que vivimos. No es extraño que así sea, aunque no debemos caer en el reduccionismo. Un sistema simple (la mercancía) repercute (recursividad), se despliega de tal forma que pare un sistema complejo, que es cualitativamente diferente de la partícula que le dio la información.
Si una mariposa en Beijing puede desencadenar un huracán en Miami, como postula la Teoría del Caos, ¿No puede una crisis económica repercutir en todo el sistema? Vemos confirmar esta teoría en las crisis que generan ciertas economías particulares (nacionales) sobre el conjunto de la economía mundial.
De todas maneras, una extrapolación demasiado esquemática de la geometría fractal a las ciencias sociales será siempre una utopía, ya que la sociedad no es precisamente una abstracción matemática. En las matemáticas priman los entes estáticos, ideales: los números. Con una ecuación sumaria, o parámetros fijos, una computadora puede deducir una estructura, como pasa en el caso de las imágenes digitales que representan ecuaciones fractales, que no son otra cosa sino una ecuación iterada una cantidad determinada de veces. Sin embargo, una sociedad no puede hallar una ecuación sumaria que genere una estructura determinada, por el simple hecho de que los pilares de una sociedad son más elástico que simples coordenadas ideales. Entonces se da lo que la teoría del caos denomina "sensibilidad extrema" a los "estados iniciales" de un proceso, que pueden redundar en drásticos cambios pasado un tiempo del inicio. De este modo, en las ciencias sociales priman los elementos móviles, la sociedad en un movimiento incesante. Sin embargo, el análisis del "ADN social", o sea, todas sus tendencias internas de desarrollo, pueden ser estudiadas siguiendo los parámetros de esta teoría, que no es otra cosa que una teoría integral del desarrollo, del devenir. Dicho de otra manera, es una forma novedosa que puede tomar el método dialéctico que funda Marx, sobre la base de Hegel y Heráclito.
La ciencia tiene como uno de sus usos la "predicción". Es decir, predecir determinando Leyes que se cumplan a rajatabla, con lo que el futuro sería predescible desde la razón. Muy diferente a la predicción esotérica, este tipo de predicción científica se da en base al estudio de las condiciones iniciales de un fenómeno. Allí se trata de observar sus principales tendencias vitales, que se cristalizan en un tipo de desarrollo. Dos ejemplos: Newton, con su teoría de la gravedad, estableció leyes que permitieron resolver y predecir, fenómenos que antes eran imposibles de estudiar. Otro ejemplo lo tenemos con el avance de la biología genética. Con el estudio del genoma humano, lo que se está tratando de hacer es sacar las leyes que rigen el desarrollo del ser humano. Sin embargo, la sociedad no tiene un ADN tan rígido como el ser humano.
Marx también estudió otras ecuaciones sumarias que engendraban a la estructura capitalista mundial. Una de ellas era la propiedad privada de los medios de producción. Estudiando esta forma legal de relacionamiento social, halló cómo se desarrollaría este fenómeno histórico. Y sacó la conclusión de que la propiedad privada tendía al monopolio, a lo que hoy llamaríamos técnicamente fusión de empresas. Pero no pudo determinar "exactamente" el porvenir del sistema, ya que el capitalismo no tiene un ADN que permita predecir con exactitud su desenvolvimiento diacrónico, histórico. Por ello, las ciencias sociales se baten entre las ciencias duras y las blandas. No llega a ser una "ciencia dura" por esta imposibilidad de hallar leyes precisas como el caso de las ciencias exactas. Pero puede hallar leyes elásticas, que acerquen al objeto de estudio sin renunciar a la ciencia. El método que puede servir para ello es la teoría del caos y los fractales.
En esto se relacionan la teoría de fractales y la teoría del caos, las cuales son parte de un mismo y novedoso paradigma emergente en la Ciencia. La teoría de Sistemas de Ludwig von Bertalanffy también tiene sus aportes para hacer, al igual que la Teoría de las catástrofes, de René Thom
2006-09-01 07:28:12
·
answer #1
·
answered by Anonymous
·
1⤊
0⤋
Fractal, en matemáticas, figura geométrica con una estructura compleja y pormenorizada a cualquier escala. Normalmente los fractales son autosemejantes, es decir, tienen la propiedad de que una pequeña sección de un fractal puede ser vista como una réplica a menor escala de todo el fractal. Un ejemplo de fractal es el “copo de nieve”, curva que se obtiene tomando un triángulo equilátero y colocando sucesivos triángulos, cada vez de menor tamaño, en el tercio medio de los lados cada vez más pequeños. En teorÃa, el resultado es una figura de superficie finita pero con un perÃmetro de longitud infinita, y con un número infinito de vértices. En el lenguaje matemático del cálculo, dicha curva no se puede diferenciar. Se pueden construir muchas de estas figuras repetitivas aunque desde su aparición en el siglo XIX se habÃan considerado como un concepto extravagante.
Un cambio decisivo en el estudio de los fractales ocurrió con el descubrimiento de la geometrÃa fractal por el matemático francés de origen polaco Benoit B. Mandelbrot en la década de los setenta. Mandelbrot utilizó una definición de dimensión mucho más abstracta que la usada en la geometrÃa euclÃdea, afirmando que la dimensión de un fractal se debe usar como un exponente al medir su tamaño. El resultado es que no se puede considerar estrictamente que los fractales existen en una, dos o un número entero de dimensiones, sino que se han de manejar matemáticamente como si tuvieran dimensión fraccionaria. La curva del “copo de nieve” tiene una dimensión fractal de 1,2618.
La geometrÃa fractal no es solamente una idea abstracta. Un litoral, considerado desde el punto de vista de su irregularidad más pequeña, tenderÃa hacia una longitud infinita, lo mismo que ocurre con el “copo de nieve”. Mandelbrot sugirió que las montañas, nubes, rocas de agregación, galaxias y otros fenómenos naturales son similares a los fractales, por lo que la aplicación de la geometrÃa fractal a las ciencias es un campo que está creciendo rápidamente. Además, la belleza estética de los fractales los ha convertido en elemento fundamental de los gráficos por ordenador o computadora.
Los fractales también se usan en ordenadores para reducir el tamaño de fotografÃas e imágenes de vÃdeo. En 1987, el matemático inglés Michael F. Barnsley descubrió la transformación fractal, capaz de detectar fractales en fotografÃas digitalizadas. Este descubrimiento engendró la compresión fractal de imágenes, utilizada en multimedia y otras aplicaciones basadas en la imagen.
2006-09-02 03:02:49
·
answer #2
·
answered by Danielle 2
·
0⤊
0⤋