English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2007-12-01 12:56:52 · 3 answers · asked by john h 1 in Science & Mathematics Mathematics

3 answers

y = x^(cosx)

taking logs

ln(y) = cosx ln(x)

differentiating

(1/y)dy = [cos(x)(1/x) + ln(x)(-sin(x)]dx

dy/dx = y[(1/x)cos(x) - sin(x) ln(x)]

dy/dx = x^(cosx)[(1/x)cos(x) - sin(x) ln(x)]

2007-12-01 13:04:38 · answer #1 · answered by mohanrao d 7 · 0 0

implicit differenciation

y = x^(cosx)

take nateral log for both sides
lny = ln x^(cosx)

log power rule:
ln(a^x) = x ln(a)

lny = cosx ln(x)

dy (lny) = d/dx [(cosx) ln(x)]

dy 1/y = d/dx (cosx) ln(x)

product rule:
d/dx (uv) = u'v + v'u

dy 1/y = d/dx (cosx) lnx + d/dx (lnx) (cosx)

dy 1/y = (-sinx)lnx + (cosx)/x

dy/dx = y * [(-sinx)lnx + (cosx)/x]

dy/dx = y [(cosx)/x - sinx lnx)

recall that y = x^(cosx)

dy/dx = x^(cosx) [(cosx)/x - sinx lnx] <== answer


Rec

2007-12-01 21:29:53 · answer #2 · answered by Anonymous · 0 0

Apply product rule of differentiation:
d(uv) = du x v + u x d(v)
If u = x^, then d(x^) = n.x power (n-1) .
If v = Cos x, then d(Cos x) = -Sin x.
As such, d(x^ cos x) = n.x power (n-1) xCos x - x^ Sinx.

2007-12-01 21:20:51 · answer #3 · answered by Learner 7 · 0 0

fedest.com, questions and answers